
THEFT OF INFORMATION IN THE TAKE-GRANT
PROTECTION MODEL

/} I); i g

Matt Bishop <'_ --_ --->_.--

Technical Report PCS-TR88-137 (revised)

") >i' " '

Theft of Information in the Take.Grant Protection Model

Matt Bishop

Dopant of Mathematics and Computer Science

Dartmouth College
Hanover, NH 03755

ABSTRACT

Questions of information flow are in many ways more important than questions of

access control, because the goal of many security policies is to thwart the unautho-

rized release of information, not merely the illicit obtaining of access rights to that
information. The Take-Grant Protection Model is an excellent theoretical tool for

examining such issues because conditions necessary and sufficient for information

to flow between two objects, and for rights to objects to be obtained or stolen, are

known. In this paper we extend these results by examining the question of informa-

tion flow from an object the owner of which is unwilling to release that information.

Necessary and sufficient conditions for such "theft of information" to occur are de-

rived, and bounds on the number of subjects that must take action for the theft to

occur are presented. To emphasize the usefulness of these results, the security pol-

iciesof complete isolation, transfer of rights with the cooperation of an owner, and

transfer of information (but not rights) with the cooperation of the owner are pre-

sented; the last is used to model a simple reference monitor guarding a resource.

Categories and Subject Descriptors: C. 1.3 [Processor Architectures]: Other Ar-

chitectural Types - capability architectures; C.2.0 [Computer-Communication

Networks]: General- security and protection; D.2.0 [Software Engineering]:

General -protection mechanisms; D.4.6 [Operating Systems]: Security and Pro-

tection - access controls; information flow controls; security kernels; H. 1.0 [Mod-

els and Principles]: General; H.2.0 [Database Management]: General - security,

integrity, and protection; K.6.m [Management of Computing and Information

Systems]: Miscellaneous - security

General Terms: Design, Management, Security, Theory, Verification

Additional Key Words and Phrases: conspiracy, information flow, isolation, shar-

ing, reference monitor, safety problem, security policy, take-grant protection model,
theft

Portions of this work were supported by grant NAG2-480 from the National Aeronautics and Space Administration to
Dartmouth College, and stem from the author's Ph.D. dissertation. A preliminary version of this paper was presented
at the First Comput_ Security Foundations Workshop in Franconia, NH (1988).

Page 1 of 43

1. Introduction

The terms security and safety are often used interchange, ably; in fact, they are not syn-

onyms. The term "safe" applies to an abstract model; its initial state is called "safe" if it is not pos-

sible to reach a new state in which a fight, or information, can be transferred. The term "secure"

applies to a concrete system; it requires not only that the abstract model of the system be safe, but

also that the concrete system correctly implement the abstract model. Because of the complexity

of demonstrating correctness of implementation, analyses of safety are far more common than

proofs of security.

Among the earliest models used to analyze the safety of models of computer systems was

the access control matrix [6][9][12]; by representing commands as a set of tests for the presence

of specific rights in specific locations which, if true, caused the execution of a sequence of primitive

operations, Harrison, Ruzzo, and Ullman were able to prove that in general, it cannot be deter-

mined whether a system is safe [9]. The efforts to understand the limits of this safety question -

that is, under what conditions can the safety of a system be determined - have spurred the study of

several models.

Harrison and Ruzzo used the access control matrix model to study the relationship of the

complexity of commands to the safety question. In [9], it had been shown that if each command

consisted of exactly one primitive operation, the safety question was decidable; in [8], Harrison and

Ruzzo showed that when the system is monotonic (that is, no right, no subject, and no object may

be deleted or destroyed), the safety question is still undecidable, and restricting the set of tests at

the beginning of each command to have as few as two elements (biconditional) does not make it

decidable. But if that set has only one test, then the safety of monotonic systems is decidable.

The Schematic Protection Model [17][18] has been used to examine a limited class of sys-

tems (called acyclic attenuating systems), and the safety question for such schemes was shown to

be decidable. These systems place restrictions on the creation of subjects and objects; specifically,

at no time way a child have more rights than its parent (attenuation), and a subject of type A cannot

create a subject of type B if a subject of type B can (either directly or, through its descendents, in-

directly) create a subject of type A (acyclicness; this holds for all A _ B). This model allows very

general rules to be used to determine when one of three primitive operations (copy, demand, and

create) may be performed; in terms of the access control matrix model, it essentially restricts the

sequences of primitive operations that make up the body of commands to a set of three without re-

stricting the set of tests in the commands.

Page 2 of 43

The Take-Grant Protection Model [11] differs from the access control matrix model and the

schematic protection model by specifying both the sequences of primitive operations making up

the body of the commands and the set of tests upon which the execution of those sequences is con-

ditioned. Further, and more surprisingly, it also prevents a subject from obtaining rights over itself;

this makes representing it in terms of the other two models rather difficult. (If reflexivity were al-

lowed, Take-Ca'ant would fall into the class of acyclic attenuating systems characterizable using the

schematic protection model, showing the safety question to be decidable for that system.) Howev-

er, irreflexivity does not appear to be fundamental to the model [20]. We shall touch on this again

in the conclusion.

General questions of safety aside, questions of access control often require specific answers

in specific settings; for example, given some explicit set of operations, can one user access a file

belonging to another user? This question has been discussed for many types of systems, for many

sets of rules, and in contexts other than formal modelling (for example, see [5][15][16]). The ad-

vantage of not using formal models is that the discussion focuses on what access control policies

are realistic, both in implementation and in enforcement; the disadvantage is that the effects of the

rules implementing those policies depend on a host of factors that are often overlooked or not un-

derstoocl thoroughly.

The Take-Grant Protection Model presents features of both types of models, namely those

used to analyze questions of safety and those used to analyze the effects of specific access control

policies. It represents systems as graphs to be altered by specific operations and, although the mod-

el was developed to test the limits of the results in [9], in this model, safety is not merely decidable

even if the number of objects which can be created is unbounded, but it is decidable in time linear

in the size of the graph. Further, the focus of most studies of this model have been on characterizing

conditions necessary and sufficient for the transfer of rights, on the number of active entities that

must cooperate for such transfers to take place, and on the complexity of testing for those condi-

tons in a representation of a system. For this reason it is in some sense of more "practical" use than

other formal systems, in that the safety question is decidable and the study of the complexity of

conditions allowing compromise is emphasized.

Early work on the Take-Grant Protection Model [11][14] dealt with the transfer of rights

assuming all active agents in the system would cooperate. Snyder extended these characterizations

to include conditions under which rights could be stolen [21]; Bishop and Snyder introduced the

Page 3 of 43

notion of information flow and formulated necessary and sufficient conditions for information

sharing [4]. Applications of the model to various systems have been explored [3][10][19][22].

This paper extends that work and combines it with the notion of theft. In the next two sec-

tions, we review the rules governing wansfer of rights and information within the model, as well as

some of the consequences of those rules. Next, we define, and present necessary and sufficient con-

ditions for, the theft of information; following that, we present bounds on the number of actors

needed for information to be shared (or stolen). We then briefly compare our results to similar ones

for theft of rights. To demonstrate the usefulness of the concepts, we express the security policies

of total isolation, owners being allowed to wansfer rights, owners being allowed to transfer infor-

mation but not rights, and then analyze the concept of a reference monitor. Finally, we suggest areas

for future research.

2. Transfers of Authority

Let a finite, directed graph called a protection graph represent a system to be modelled. A

protection graph has two distinct kinds of vertices, called subjects and objects. Subjects are active

vertices, and (for example) can represent users; they can pass authority by invoking graph rewrit-

ing rules. Objects, on the other hand, are completely passive; they can (for example) represent files,

and do nothing.

In protection graphs, the subjects are represented by • and objects by O. Vertices which

may be either subjects or objects are represented by ®. Pictures are very often used to show the

effects of applying a graph rewriting role on the graph; the symbol I- is used to mean that the graph

following it is produced by the action of a graph rewriting rule on the graph preceding it. The sym-

bol I--* represents several successive rule applications. The term witness means a sequence of graph

rewriting rules which produce the predicate or condition being witnessed, and a witness is often

demonstrated by listing the graph rewriting rules that make up the witness (usually with pictures).

The edges of a protection graph are labelled with subsets of a finite setR of rights. Suppose

that R = [r, w, t, g }, where r, w, t, and g represent read, write, take, and grant rights, respectively.

When written as labels on a graph, or when the set of rights under discussion contains only one

element, the set braces are normally omitted.

The Take-Grant Protection Model permits vertices with certain rights to transfer rights from

one vertex to another. The rules governing the wansfer of rights are called de jure rules and are as

follows:

Page 4 of 43

take: Let x, y, and z be three distinct vertices in a protection graph G 0, and let x be a subject. Let

the_bean edge from x toy labelledy with te y,anedge fromy toz labeIlexi[_,and 0t_ _.

Then the take ruledefinesa new graph G Iby adding an edge tothe protectiongraph from

x toz labelleda. Graphically,

x y z x y z

grant'.

The rule is written "x takes (a to z) from y."

Let x, y, and z be three distinct vertices in a protection graph G 0, and let x be a subject. Let

there be an edge from x to y labelled y with g e % an edge from x to z labelled [3, and ot _ [_.

Then the grant rule defines a new graph G 1 by adding an edge to the protection graph from

x to z labelledoz. Graphically,

y x z

ct

y x z

The rule is written 'ht grants (a to z) to y."

create: Let x be any subject in a protection graph G Oand let a _ R. Create defines a new graph G l

by adding a new vertex y to the graph and an edge from x to y labelled a. Graphically,

x x z

The rule is written "x creates (ct to new vertex) y."

remove: Let x and y be any distinct vertices in a protection graph G 1 such that x is a subject. Let

there be an explicit edge from x to y labelled]_, and let a _ R. Then remove defines a new

graph G 1 by deleting the 0t labels from [$. If [3 becomes empty as a result, the edge itself is

deleted. Graphically,

X Z X Z

The rule is written "x removes (a to) y."

Page 5 of 43

The edges which appear in the above graph are called e_licit because they represent au-

thority known to the protection system. Further, and more formally, a vertex is an actor if the ap-

plication of a graph rewriting rule requires that vertex to be a subject for that rule to be applied.

Note that there is a duality between the take and grant rules when the edge labelled t or g is

between two subjects.Specifically,with thecooperationof both subjects,rightscan be transmitted

backwards along the edges. The following two lemmata [11] demonstrate this:

Lemma 1.

A_.. t
V_

Y
-: F-*

Y x z

Le_-na 2.

g (Z
A ..-A ._ I *W VV

Y x z

(1

Y x z

As a result,when consideringthe transfer of authoritybetween cooperatingsubjects,nei-

therdirection nor label of the edge is important, so long as the label is in the set { t, g }.

Under what conditions can rights be shared.'? To answer this question, we first need to ex-

amine some characteristics of take-grant graphs.

Defnition. A tg-path is a nonempty sequence v0, v n of distinct vertices such that for all i,

0 _ i < n, v i is connected to vi+ l by an edge (in either direction) with a label containing t or g.

Note that the vertices in a tg-path may be either subjects or objects.

Definition. Vertices are tg-connected if there is a tg-path between them.

DOnition. An/s/and is a maximal tg-connected subject-only subgraph.

Any right that one vertex in an island has can be obtained by any other vertex in that island.

In other words, an island is a maximal set of subjects which possess common rights.

With each tg-path, associate one or more words over the alphabet { }, t; _, _'} in the obvi-

ous way. If the path has length 0, then the associated word is the null word v.

Defnition. A vertex v 0 initially spans to v n if v 0 is a subject and there is a tg-path between v 0 and

vn with associatedword in {)*_} u {v}.

Page 6 of 43

p s" t s

g ___ g

u v w x y

islands {p, u },{w },{y,s" } bridges:

initialspan: p (associatedword v) terminalspan:

r q
_0

u, v, w and w, x, y

s', s (associated word v)

Figure I. Some examples ofTake-Grant Terms. The rcadcr isencouraged to findothers.
i

The span is called "'initial" because it is the first part of a tg-path along which rights can be

wansferred.

Definition. A vertex v 0 terminally spans to v n if v 0 is a subject and there is a tg-path between v 0

and v a with associated word in { _* }.

The span is called "terminal" because it is the last part of a tg-path along which rights can

be transferred.

Definition. A bridge is a tg-path with v 0 and va both subjects and the path's associated word in

_t • 4f .

An initialspan isa tg-pathalong which the lastvertexof thepath can transmitauthority;a

terminalspan isa tg-pathalong which thefirstvertexin thepathcan acquireauthority.A bridgeis

a pathalong which a rightcan be passed,possiblyby usingLcmma I and Lcmma 2 as wellas the

de jure rules. Figure 1 illustrates these terms.

The following predicate formally defines the notion of transferring authority.

Definition. The predicate can*share(a, x, y, G 0) is true for a set of rights cz and two vertices x and

y if and only if there exist protection graphs G 1, ..., Gn such that G O t-*G n using only de jure rules,

and in G a there is an edge from x to y labelled

In short, ff x can acquire o_ rights over y, then can*share(a, x, y, GO) is true. The theorem

which establishes necessary and sufficient conditions for this predicate to hold is [14]:

Page 7 of 43

Theorem 3. The pre_cate can.share(e_ x, y, G 0) is true ff and only ff there is an edge from x to y

in G O labelled ek or if the following hold simultaneously:

(3.1) there is a vertex $ ¢ G O with an s-to-y edge labeled o4

(3.2) there exists a subject vertex x" such that x" = x or x" initially spans to x;

(3.3) there exists a subject vertex s" such that s" = s or s" terminally spans to s; and

(3.4) there exist islands I1, -.-, In such that x" is in II, s" is in In, and there is a bridge from lj

to lj+ 1 (1 _j < n).

Corollary 4. There is an algorithm for testing caneshare that operates in linear time in the size of

the graph.

Finally, ff the right can be transferred without any vertex which has that right applying a

rule, the right is said to be stolen. Formally:

Definition. The predicate canesteal((z, x, y, GO) is true if and only if there is no edge labelled (z from

x to y in U 0, there exist protection graphs Gl,..., U n such that G 0 _-*G n using only de jure rules,

in G n there is an edge from x to y labelled (z, and if there is an edge labelled et from s to q in G 0,

then no rule has the form "s grants (a to q) to z" for any z G Gj (l _j < n).

Essentially, this says that canesteal is true if ca,eshare is true, the thief did not have the

right initially and no owner of the right in the initial graph gave it away. Necessary and sufficient

conditions for this to be true are [21]:

Theorem 5. The predicate canesteal(_ x, 3,, U0) is true if and only if the following hold simulta-

neously:

(5.1) there is no edge labelled (z from x to y in G0;

(5.2) there exists a subject vertex x" such that x" = x or x" initially spans to x;

(5.3) there is a vertex s with an edge from s to y labelled ¢z in GO;

(5.4) can.share(t, x', s, G0) is true.

Corollary 6. There is an algorithm for testing canesteal that operates in linear time in the size of

the graph.

These rules apply only to the transfer of rights. But information may be u'ansferred without

any transfer of rights. Let us now examine this question.

Page 8 of 43

3. Transfers of Information

The de jure rules control the transfer of authority only; they say nothing about the wansfer

of information. The two are clearly different; for example, ifa user is shown a document containing

information which he does not have authority to read, the information has been transferred to the

user. The de jure rules do not model cases like this. Instead, we use a different set of rules, called

de facto rules, to derive paths along which information may flow.

In order to describe transfers of information, we cannot use explicit edges because no

change in authorityoccurs.Still,some indicationof the paths along which informationcan be

passed is necessary. Hence, we use a dashed line, labelled by r, to represent the path of a potential

de facto transfer. Such an edge is called an implicit edge. Notice that implicit edges cannot be ma-

nipulated by de jure rules, since the de jure rules only affect authorities recorded in the protection

system, and implicit edges do not represent such authority.

A protection graph records all authorities as explicit edges, so when a de jure rule is used

to add a new edge, an actual transfer of authority has taken place. But when a de facto rule is used,

a path along which information can be wansferred is exhibited; the actual transfer may, or may not,

have occurred. It is impossible to tell this from the graph, because the graph records authorities and

not information. For the purposes of this model, however, we shall assume that if it is possible for

information to be transferred from one vertex to another, such a transfer has in fact occurred.

The following set of de facto rules was introduced in [4] to model transfers of information:

post: Let x, y, and z be three distinct vertices in a protection graph G 0, and let x and z be subjects.

Let there be an edge from x to y labelled ¢z with r E ¢x and an edge from z to y labelled [3,

where w E 13. Then the post rule defines a new graph Gl with an implicit edge from x to z

labelled r. Graphically,

¥ 14J

x y z

°°°o_,_-i..°

°_°°°*'° "°,°%

x y z

The rule is written "z posts to x through y," and is so named because it is reminiscent of y

being a mailbox to which z posts a letter that x reads.

pass: Let x, 3,, and z be three distinct vertices in a protection graph G 0, and let y be a subject. Let

there be an edge from y to x labelled ¢ with w ¢ 0t and an edge from y to z labelled 13,

Page 9 of 43

where• _ 13. Then the pass rule defines a new graph GI with an impficit edge from x to z

labelledr.Graphically,

W r

v

x y z

r

jto*"° *-%

it_ _

x y z

The rule is written "y passes from z to x," and is so named because y acquires the informa-

tion from z and passes it on to x.

517Y" Let x, y, and z be three distinct vertices in a protection graph G 0, and let x and y be subjects.

Let there be an edge from x to y labelled ct with r ¢ ct and an edge from y to z labelled [3,

where r ¢ [3. Then the spy rule defines a new graph G I with an implicit edge from x to z

labelledr.Graphically,
r

,°_°_°°°_.

tw,°o,o_°° _°_,_%

Ir wvlw _

x y z
x y z

The rule is written "x spies on z using y," and is so named because x is "looking over the

shoulder" of y to monitor z.

find: Let x, 3,, and z be three distinct vertices in a protection graph G 0, and let y and z be subjects.

Let there be an edge from y to x labelled ¢z with w G _x and an edge from z to y labelled 13,

where w ¢ 13. Then the spy rule defines a new graph G 1 with an implicit edge from x to z

labelled r. Graphically,
r

,°o,..... °°°°..,%,

e*_° %4
w t

. -IF_W

x y z x y z

The rule is written "x finds from z through y," and is named because x is completely pas-

sive; z and y give it information, which x then "finds."

Note that these rules add implicit and not explicit edges. Further, as these rules model in-

formation flow, they can be used when either (or both) of the edges between x and y, or y and z,

are implicit.

Page I0 of 43

r i¢ rt¢

O----1_2_ A_.. AW TM V

Figure 2. _t_fion graph with associated words rwr and _/""¥WW .

3.1. Information Flow in a Graph with Static Rights

Now, consider the conditions necessary for a potential de facto transfer to exist in a graph.

Definition. The predicate caneknowef(x, y, GO) is true ff and only if there exists a sequence of pro-

tection graphs GO,..., G n such that G i I--*Gi+ 1 using only de facto rules, and in G n there is an edge

from x to y labelled r or an edge from y to x labelled w, and if the edge is explicit, its source is a

subject.

Intuitively, caneknowef(x, y, GO) is true if and only if x has the authority to read from y, y

has the authority to write to x, or an implicit edge from x to y can be added by means of the de facto

rules. Note the duality of read and write. Ifx can write to y, then y can effectively read x. All x has

to do is write to y any information that y wants to see. This duality will play an important role in

later results.

Definition. An rw-path is a nonempty sequence v 0, ..., v n of distinct vertices such that for all i,

0 g i < n, v i is connected to Vi+ 1 by an edge (in either direction) with a label containing r or w.

With each rw-path, associate one or more words over the alphabet { _', _, _, _¢} in the ob-

vious way (see figure 2 for an example). If the path has length 0, then the associated work is the

null word v.

Definition. An rw-path v 0 v n, n > 1, is an admissible rw-path if and only if it has an associated
d..

word ala 2. ..a n in the regular language (_ u _)*, and ifa i = _ then vi. 1 is a subject, and ifa i = w

then vi is a subject.

Note that there cannot be two consecutive objects on an rw-admissible path. Given these

definitions, it can be shown [4]:

Theorem 7. Let x and y be vertices in a protection graph. Then caneknowsf(x, y, GO) is true if and

only if there is an admissible rw-path between x and y.

3.2. Information Flow in a Graph with Changing Rights

These results can be extended to include both de jure and de facto rules. To do so, we must

define terms combining characteristics of those used in both the de jure and de facto developments.

Page II of 43

Definition. The r _ canoknow(x, y, GO) is true ff and only ff there exists a sequence of pro-

tection graphs G 0, , G n such that G O t-*Gn, and in G n there is an edge from x to y labelled r or

an edge from y to x labelled w, and if the edge is explicit, its source is a subject.

This is merely can*know.f(x, y, GO) without the restriction on the types of roles used.

Definition. An rwtg-path is a nonempty sequence v 0, vn of distinct vertices such that for all i,

0 < i < n, v i is connected to vi+ 1 by an edge (in either direction) with a label containing t, g, r or w.

With each rwtg-path, associate one or more words over the alphabet { t, t, g, g, _, r, w, wL}

in the obvious way.

De_nition. A vertex v0 rw-initially spans to vn if v0 is a subject and there is an rwtg-path between

v0and va with associatedword in {t'w} u {v].

The span iscalled"rw-initial"because itisthe firstpartof an twig-pathalong which infor-

mation can be u'ansferred;the"rw" emphasizes thisisinformationtransfer,not authoritytransfer.

De./inition.A vertexv0rw-term/nal/yspans tov. ifv0 isa subjectand thereisan rwtg-pathbetween

v 0 and v. with associated word in { _* _].

The span is called "rw-terminal" because it is the last part of an rwtg-path along which in-

formation can be transferred.

De:nition. A bridge is an rwtg-path with v 0 and v n both subjects and the path's associated word in

the regular language B { _* _* " "" ' "-_= , , t*gt*, t*gt* } (note this is the same as the definition given

earlier).

DeJ_nition. A connection is an rwtg-path with v0 and v n both subjects and the path's associated

word in C = {_*_, _v_*, "_t-rwt'_'_}.

An rw-initial span is an rwtg-path along which the last vertex of the path can transmit in-

formation; an rw-terminal span is an rwtg-path along which the first vertex in the path can acquire

information. A connection is a path along which information can be passed.

The next result [4] characterizes the set of graphs for which can.know is true:

Page 12 of 43

Theorem 8. The predicate can.know(x, y, GO) is true ff and only ff there exists a sequence of sub-

jects ul,..., u_ in G O (n > l) such that the following conditions hold:

(g.1) Ul ffi x or u I rw-initially spans to x;

(8.2) u n = y or u n rw-terminally spans to y;

(8.3) for a/l i, 1 _ i < n, t/rare is an rwtg-path betw_n u i and ui÷ 1 with associated word in

8uC.

Corollary 9. There is an algorithm for testing can*know that operates in linear time in the size of

the graph.

In order to appreciate these results, let us now look at some examples of the uses of the rules

and theorems; these will be useful in deriving our later results.

4. Some Examples of Combined de jure and de facto Rule Applications

In this section we present results which arc not only good examples of how the graph re-

writing rules and the theorems in the previous sections arc used, but also which will be quite useful

in our latex work. The first two results arc quite basic, and state that if one subject has take or grant

rights over another subject, either can (with the cooperation of the other) read information from the

other. More formally:

Lemma 10.

j_,--.........
x y x Y

Proof: First, y creates (rw to new vertex) z:

J.- • t
x y x y z

Next, x takes (rw to z) from y:

I-

rw

x y z

Page 13 of 43

Finally,x andy usethepostrule _'ough z:
rw

Note that the direction of the implicit read edge depends on which rights x and y use. If x writes

to z and y reads from z, the implicit edge (information flow) goes from x to y. If, on the other hand,

y writes to z and x reads from z, the implicit edge goes from y to x. •

x y

Lemma 11.

Proof." First x creates (rw to new vertex) z:

x y

Then x grants (rw to z) to y:

Finally, x and z use the post rule through z:

x y

rw A g _A
V wW

Z X y

?'W

z x y

rw

r

As with the previous lemma, note that the direction of the implicit read edge depends on which

rights x and y use. •

Next, we consider the following problem: suppose we have a graph G Owith at least three

vertices, namely two subjects x and y, and another vertex z which may be either a subject or an

object. There is a path from x to z and a path from y to z; these are the only paths in the graph.(Note

that these paths may include vertices other than their endpoints. However, we are assuming that

except for such internal vertices, there are no vertices other than x, y, and z.) Furthermore, these

Page 14 of 43

paths may be initial, terminal, rw-initial, or rw-terminal (any combination is possible). Our prob-

lem is to derive wimesse_s to caa-know(x, y, U O) for those combinations of paths for which that

predicate is true, and to prove that predicate is false for the others.

Without loss of generality, we can assume that initial, terminal, rw-initial, and rw-terminal

spans are all of length 1, because if the path is longer, all edges but the first are take edges and so

by repeated applications of the take rule the vertex at the source of the directed path may obtain an

edge with the rights of the last edge in the path. So let us consider each combination of paths.

First, if the path from y to z is rw-terminal and z is a subject, then the word associated with

the y to z path is not in the set B u C and so can-know(x, y, GO) is false by condition (8.3) of The-

orem 8; similarly, ff z is an object, the word associated with the x to y path will not be in the set

8 u C and, again, can.know(x, y, G O) is false. If the path from x to z is rw-initial, similar reasoning

shows again that can*know(x, y, G O) is false whether or not z is a subject.

Let us consider the remaining cases one by one. We shall not draw the pictures as we did

for the previous two lemmata.

x to z terminal, y to z terminal

If z is an object, the word associated with the path between x and y is not in the set B u C

and so the predicate is false. Ifz is a subject, the following is a witness:

(1) z creates (rw to new vertex) v.

(2) x takes (r to v) from z.

(3) y takes(w to v) from z.

(4) x and y use the postruletoobtainan implicitr edge from x to y through z.

This verifiesthatcan.know(x, y,GO) istrue.Note thatallthreeverticesx,y,and z must act.

x to z terminal, y to z initial

The following is a witness whether or not z is a subject:

(I) y creates (rw to new vertex) v.

(2) y grants(rto v) toz.

(3) x takes(rtov) from z.

(4) x and y use the postruletoobtainan implicitr edge from x toy through z.

This verifies that can, know(x, y, GO) is true. In this case, only x and y need act.

x to z terminal, y to z rw-initial

If z is an object, the word associated with the path between x and y is not in the set B u C

Page 15 of 43

and so the predicate is false. If z is a subject, the following is a witness:

(1) z creates (rw to new vertex) v.

(2) x takes (r to v) from z.

(3) x and z use the post rule to obtain an implicit r edge from x to z through v.

(4) x and y use the post rule to obtain an impficit r edge from x to y through z.

This verifies that can,know(x, 3,, G 0) is true. Here, x, y and z need to act.

x to z in/t/a/, y to z term/ha/

The following is a witness whether or not z is a subject:

(1) x creates (rw to new vertex) v.

(2) y takes (r to v) from z.

(3) y takes (w to v) from z.

(4) x and y use the post rule to obtain an implicit r edge from x to y through z.

This verifies that can*know(x, y, GO) is true. Again, only x and y must act.

x to z initial, y to z initial

If z is an object, the word associated with the path between x and y is not in the set B u C

and so the predicate is false. If z is a subject, the following is a witness:

(1) x creates (rw to new vertex) v.

(2) y creates (rw to new vertex) w.

(2) x grants (w to v) to z.

(3) y grants (r to w) to z.

(4) x and z use the post rule to obtain an implicit r edge from x to z through v.

(5) x and z use the spy rule to obtain an implicit r edge from x to w through z.

(6) x and y use the post rule to obtain an implicit r edge from x to y through w.

This verifies that can.know(x, y, G 0) is mae. As in the first case, all of x, y, and z must act.

x to z initial, y to z rw-in/tia/

If z is an object, the word associated with the path between x and y is not in the set B u C

and so the predicate is false. If z is a subject, the following is a witness:

(1) x creates (rw to new vertex) v.

(2) x grants (w to v) to z.

(3) x and z use the post rule to obtain an implicit r edge from x to z through v.

(4) x and y use the post rule to obtain an implicit r edge from x to y through z.

This verifies that can.know(x, y, GO) is true. Again, x, y and z need to act.

Page 16 of 43

y-to-z path
initial

terminal

rw-initisl

rw-terminal

x-to-z path
initial terminal rw-initial rw-terminal

maybe true false maybe

true maybe false maybe

maybe maybe false true

false false false false

Table 1. Summary of values of cansknow(x, y, GO) in a 3-vertex graph G 0. The cases marked

"maybe" are true if and only if z is a subject (and an actor).

x to z m-terminal, y to z initial

If z is an object, the word associated with the path between x and y is not in the set B u C

and so the predicate is false. If z is a subject, the following is a wimess:

(1) y creates (rw to new vertex) v.

(2) y grants (r to v) to z.

(3) y and z use the post rule to obtain an implicit r edge from z toy through v.

(4) x and y use the spy rule to obtain an implicit • edge from x to y through z.

This verifies that can,know(x, y, G 0) is true. All of x, y and z need to act.

x to z rw-terminal, y to z terminal

If z is an object, the word associated with the path between x and y is not in the set B t.,, C

and so the predicate is false. If z is a subject, the following is a wimess:

(1) z creates (rw to new vertex) v.

(2) y takes (w to v) from z.

(3) y and z use the post rule to obtain an implicit • edge from z toy through v.

(4) x and z use the spy rule to obtain an implicit • edge from x to y through z.

This verifies that can*know(x, y, GO) is true. Once more, x, y and z need to act.

x to z rw-terminal, y to z rw-initial

The following is a witness whether or not z is a subject:

(1) x and y use the post rule to obtain an implicit • edge from x to y through z.

This verifies that can*know(x, y, GO) is true. This time, only x and y need act.

Table 1 summarizes these results. Let us now consider the question of theft of information.

5. Snooping, of the Theft of Information

Up to this point, we have been considering cases where all vertices cooperate in sharing in-

formation, so all de facto rules may be applied with impunity. Suppose this is not true; suppose a

Page 17 of 43

vertex which has a right to read information from another vertex flatly refuses to pass this informa-

tion along. Under what conditions can a vertex which does not have read rights over a second ver-

tex obtain information from the second vertex?

An example will help show what the problem is. Suppose Alice works for a firm which has

proprietary information that its competitors need desperately to see. Alice, who works with this in-

formation quite a bit, has the authority to read the documents containing the proprietary informa-

tion whenever she likes, with the understanding she is not to pass this sensitive data to anyone else,

including co-workers and superiors. The situation, in Take-C_want terms, is:

• r _ GO
Alice data

co-workers

Any documents as sensitive as those which Alice consults must be kept under lock and key.

Alice's company has several large vaults, and Alice has a key to one. To prevent employees with

the keys from making copies, when an employee leaves the office, her key must be placed in her

desk and the desk locked. To handle emergencies (such as Alice misplacing the key which unlocks

her desk), a set of master desk keys is kept in the office of the chief of building security. The only

person with a key to that office is the chief of building security, Bobby. Now, Bobby is not cleared

to read any of Alice's documents, but he can "take" Alice's right to do so by opening her desk with

his master key and copying her vault key. He can then pass the information on to someone else.

This is an example of Alice's sharing (albeit unknowingly) her right to read the documents

Bo dk•bby__._ r II_) G1

Alice data

co-workers

(To make the analogy precise, the key to the vault is the "read right" and the key to the desk is the

"take right," because with the latter key one can "take," or copy, the former key.)

Alice takes a sensitive document out of the vault, goes back to her desk, and begins to read

the document. Normally, Alice is shielded from Cathy (who sits directly behind Alice in her office)

Page 18 of 43

by a partition which for this dayonly has been removed for repairs; hence Cathy can see what Alice

is reading by looking over Alice's shoulder. In Take Grant terms, this situation is:

• _ r
r .l.v .--. _ G2

• Cathy •._ _lce data

co-workers

By the spy rule,Cathy can read the informationAlice isreading (theCathy-to-Aliceedge, being

unauthorized, is implicit); hence, can*know(Cathy, data, G2) is true so long as Cathy can look

over Alice's shoulder; if Alice read the docun_nt elsewhere, such as in the vault, Cathy would no

longer be able to read the docurncnt over Alice's shoulder (so, in Take-Grant terms, the spy rule

would not be applicable as there is no implicit or explicit Cathy-to-Alice read edge). Notice the

difference between this case and the previous one: here, Alice must "cooperate" in some sense of

the word by reading the data where Cathy could see it (such as at Alice's desk); were Alice to read

it elsewhere, for example in the vault, Cathy could not see it. But so long as data is stored in the

vault(a company requirement),Alice need not cooperate in any way with the building security

chiefin order for him to obtainthe data,because by using hismaster key forthe desks,not only

does he have acopy of Alice'srighttoread,but alsohe can exercisethatrightwhenever hc wishes,

regardlessof Alice'spresence.And thekey tohisofficecontrolsaccesstohiscopiesof thoseother

keys.

The caneknow predicatefailsto capture the distinctionbetween these two situations.To

embody the notionof "cooperation,"we definea new predicate,calledcan*snoop. This predicate

willbe trueifcan*know istrueand no-one who has any rightsover theinformationbeing snooped

for cooperates with the snooper.For example, can*snoop(Cathy, data, G2) isfalse,since Alice

must cooperate by passing the informationto Cathy (inthiscase,by reading in such a way that

Cathy can lookover her shoulder).But canesnoop(Bobby, data,Gl) istrue,sinceBobby could see

thedocuments whether or not Alice cooperated,once Bobby had "taken" the key to the vault.

Page 19 of 43

Definition. The predicate can*snoop(x, y, G 0) is true ff and only if can*steal(r, x, y, GO) is true or

there exists a sequence of graphs and rule appLications G O I-pl...I-0n G n for which all of the fol-

lowing conditions hold:

(a) there is no explicit edge from x to y labelled r in GO;

Co) there is an implicit edge from x to y labelled • in Gn; and

(c) neither y nor any vertex directly connected to y is an actor in a grant rule or a de facto

rule resulting in an (explicit or implicit) read edge with y as its target.

Before we state necessary and sufficient conditions for can*snoop to be true, let us examine

the definition more closely. The predicate is rather clearly the de facto analogue to can*steal, just

as can.know is the de facto analogue to caneshare. If x can steal read rights to y, clearly no-one

who owns those rights over y can prevent x from obtaining information from y. Similarly, if x has

authority to read 3,, it would strain the meaning of what we ate trying to define to say that the pred-

icate can.snoop(x, y, GO) is true. If can.steal(r, x, y, G 0) is false, note that any read edge from x to

y in G n must be implicit. And for the purposes of this discussion, we will assume that y will not

cooperate (either wittingly or unwittingly) with any snooping; it would be equally reasonable to

assume that y would cooperate, in which case what follows must be modified somewhat. OVe shall

return to this point later.)

Theorem 12. For distinct vertices x and y in a protection graph G O with explicit edges only, the

predicate can.snoop(x, y, GO) is Wue if and only if canssteal(r, x, y, GO) is true or all of the follow-

ing conditions hold:

(12.1) there is no edge from x to y labelled • in GO;

(12.2) there is a subject vertex x" such that x" = x or x" rw-initially spans to x in GO;

(12.3) there is a subject vertex y" such that y" ;ey, there is no edge labelled • from y" to y in

G 0' and y" rw-terminally spans to y in G0; and

(12.4) can*know(x', y', GO) is true.

Informal argument: If can*snoop is u'ue and can*steal false, we have to show all the conditions

hold. Condition (12.1) follows from the definition. By part (b) of the definition, the predicate

cansknow(x, y, GO) is true, giving condition (12.2). Also, by condition (8.2) of Theorem 8, we have

y'. Combining this with the definition, it becomes clear that although y" rw-terminally spans to y,

y" ;e y, and there is no edge labelled • from y" to y in G 0. The proof that can*know(x, y, GO) is true

Page 20 of 43

involves proving that the first rule m add a read edge with target y is a "take rule, and working back-

wards. (We should note that the latter technique is similar to the one used to prove the similar the-

orem for can.steal in [21].) Going from the conditions to can.stwop is trivial.

Proof: (=o) Let can*snoop(x, y, G 0) be true. If can*steal(r, x, y, GO) holds, we are done. So assume

can*steal(r, x, y, GO) is false.

Part (a) of the definition gives condition (12.1) of the theorem.

By part (b) of the definition, there is an implicit read edge from x to y in G n, whence by

definition can*know(x, y, GO) is true; so, condition (12.2) of this theorem results from condition

(8.1) of Theorem 8.

By condition (8.2) of Theorem 8, there is a subject y" such that y" = y or y" rw-terminally

spans to y. Ify is an object, we can take y" to be the y" in condition (12.3) of this theorem. Ify is a

subject, by part (c) of the definition of can*snoop, it is not used in the sequence of rule applications

witnessing can*snoop. Hence in this case y" _ y; choose y" in condition (12.3) of the theorem to

be this y'. Thus, in either case, the y" in condition (12.3) of this theorem is the same as the y" in

condition (8.2) of Theorem 8.

Now assume that y" and y are directly connected by an edge labelled r by G 0. Either

can*share(t, x', y', GO) is true [which means can*steal(r, x, y, GO) is true, contradiction] or y" must

actively participate in a grant, pass, or spy rule application [contradicting part (c) of the definition

of can*snoop]. In either case, there cannot be an edge labelled r from y" to y in GO.

It remains to be shown that can*know(x', y', G 0) is true. Let G O t-pl...t-On G n be a mini-

mum length derivation sequence, and let i be the least index such that Gi. 1 l-pi G i, there is no (ex-

plicit or implicit) read edge from any vertex z to y in Gi. 1 not in G 0, and there is an (explicit or

implicit) read edge from z to y in G i that is not in GO. That is, G i is the first graph in which an edge

labelled r with target y is added. Consider the rule Pi which caused this edge to be added. It cannot

be a grant rule since, by part (c) of the definition of can*snoop, the owner of r rights to y wLll not

grant them to anyone else. The rule Pi cannot be a pass or spy rule, since by part (c) of the definition

of can*snoop, the owner of r rights to y will not pass information from y to anyone else. Again by

part (c), y will not write information from itself to anyone else, so Pi cannot be a post or find rule.

As neither the create nor the remove rule adds edges to existing vertices, Pi cannot be either. Hence,

Pi must be a take rule.

Page 21 of 43

We therefore have Pi: z takes (r to y) from z', where z" is a vertex in Gi. I. Recalling that

cane/oww(x, y, G 0) is true, by Theorem 8 we see that cane_Low(x', y, GO) is true. Apply Theorem

8 again. By this theorem, there is a subject y" such that y" = y or y" rw-terminally spans to y. Noting

that there is no direct edge labelled r from y" to y in G 0, we take y" = z in Theorem 8 and in this

theorem, whence cane_ow(x', y', GO) immediately follows.

(¢=) If can*steal(r, x, y, GO) holds, can*snoop(x, y, GO) is true.

So, assume the other four conditions hold. Part (a) of the definition is the same as condition

(12.1) of the theorem. By Theorem 8, conditions (12.2), (12.3), and 02.4) establish part (b) of the

definition of canesnoop. And as y" _ y when y is a subject, pan (c) of the definition is also true.

This completes the proof of Theorem 12. •

The proof technique used above is very similar to the one used to prove theorem 6, the main

difference being the consideration of de facto rule applications. This emphasizes the similarity of

the two predicates.

As an example, let us return to the office described at the beginning of this section. Consider

G l. By Theorem 5, canesteal(r, Bobby, data, GO is true, so canesnoop(Bobby, data, GI) is also

true by the above theorem. This conforms to our intuition; as noted earlier, it doesn't matter wheth-

er or not Alice cooperates with Bobby. However, in G 2, even though can.know(Cathy, y, GO) is

true, can.steal(r, Cathy, data, G 0) is false (specifically, in Theorem 5, taking x" = Cathy, s = Alice,

and y - data, condition (5.4) fails; taking x" - x = Cathy, y" - Alice, and y = data, condition (12.3)

in Theorem 12 fails). So the predicate canesnoop captures the distinction between Alice's assisting

in Cathy's seeing the information, and Bobby's seeing the information whether or not Alice coop-

el'ages.

Corollary 13. There is an algorithm for testing canesnoop in time linear in the size of the graph.

6. Conspiracy in a Single-Path Graph

Given that we can determine whether knowing, the sharing of information, is possible in a

Take-Grant graph, how many vertices must cooperate in the sharing? The answer to this question

will give us an answer to a more interesting one involving snooping, namely how many actors are

necessary to steal information. Our study of these questions will generally follow the analysis of

theft of rights in [21], but with modifications for the de facto rules throughout.

Page 22 of 43

Before we tackle these questions in all their generality, let us restrict our attention to a spe-

cific type of graph. Let G be a graph with vertices x, y, with cansknow(x, y, GO) true, and containing

only those vertices and edges needed to witness this predicate. Thus, G is composed of the path

along which information is to be propagated. Let the set of vertices

V-{v/lx=v0, x'=v l,...,y'=vmy-vn+ 1 }

and by Theorem 8, each edge vivi+ 1, where [v i, vi+ I } _ V, is either an edge with associated word

in B u C, an rw-terminal span from y" to y, or an rw-initial span from x" to x.

We capture the notion of the "reach" of a vertex by generalizing a term used in [21]:

Definition. An access set A(y) is defined as the set containing y and all vertices to which y initially,

terminally, rw-initially, or rw-terminally spans.

That is, A(y) is the maximal set of vertices from which y can obtain information, or to which

y can pass on information.

Definition. A subject x is an information gate if any one of the following conditions holds:

(i) x -- v 0, the only word associated with the edge v0v I is/, _, or w and there are no other

edges incident to x;

(ii) x = vi, there are exactly two edges incident to x, and the word associated with the edge

vi.ivivi+l is in the set t tr, gr, rt, rg, _ _ "_ ..,1_ ,_ /__, , wt, wg, tt, gg, rr, ww, rr, ww} ; or

/ v

(iii) x = vn+ 1, the only word associated with the edge vnvn+ l is t, g, or _, and there are no

other edges incident to x.

The idea is that information can be passed into an information gate, or out of an information

gate, without the gate taking any action, but in order for information to be passed through a gate

(that is, both in and out), the information gate must be active in a rule application. Note that the

information gate need not apply the rule; if it does not, it must then be a subject in a de facto rule,

becauseunless the subjects shown in those rules act, information cannot flow along the implicit

edge. This is a subtlety not evident when dealing with conspiracies in graphs using only de jure

rule sets, and although the information gate is analogous to a sink in [21], the difference in defini-

tion is substantial and reflects the difference between information and rights transfer.

Definition. An access set cover for G withfoci v 1, v n is a family of sets A(v l) A(v n) where

for all i, there exists aj ._n such that { vi. 1, v i } _ A(vj). If the cover minimizes n over all possible

accesssetcovers,itissaidtobe aminimal cover.

Page 23 of 43

Noticethatthe set of actors needed to implement cansknow generates a cover for G. In fact,

Lemma 14. A minimal set of actors v I v a in a sequence of rule applications producing a witness

to canoknow(x, y, G) generates an access set cover for G.

Proof." Let Pl ,Pm be a minimal set of rules required for a minimal set of actors v l, v a to

produce a witness to can.know(x, y, G). Let the access sets A(Vl), ..., A(vn) with foci v 1..... vn be

defined on G. Suppose x ¢ A(vi) for all i. By definition of access set, no actor can receive informa-

tion or rights from, or pass information or rights to, x; hence x and its incident edges may be deleted

without affecting rules Pl, Pro. But this violates condition (8.3) of Theorem 8, contradicting the

minimality of Pl, ..., Pro. This proves the claim. •

We next make formal our claim that information gates must act for information or fights to

be passed along their incident edges.

Lemma 15. If vertex v i is an information gate, and in a wimess to can.know(x, y, G) information

or rights are passed along the path it lies on, then the vertex must be an actor.

Proof." We demonstrate this for the case of v[s incident edges being _ and _'; the proof for the other

cases is similar. (Section 4 contains some useful witnesses, and proof of inability to supply other

wimesses, for these proofs.)

First, by condition (8.3) of Theorem 8, v i must be a subject, for if not, can.know(x, y, G) is

false because the paths through that information gate are neither bridges nor connections. So, as-

sume v i is not an actor, and consider the effects of this on a minimal set of rules Pl Pm required

for a minimal set of actors to produce a wimess showing that can.know(x, y, G) holds.

No rule is of the form "z takes (0t to y) from vi" for any z in G, since v i has no outgoing

edges and by the nature of the de jure rules can never be assigned any. As the number m of rules

applied is minimal, no rules of the form "z takes (t to vi) from y" or "vi.l grants (t to vi) to z" for

any vertex z in G arc ever executed since the t fight so assigned could not be used. Hence no de

jure rule involves v i.

Now consider the de facto rules. Clearly, only information passing through v i is relevant;

hence, information will never be written into v i and not later read (because then the rule could be

deleted, contradicting the minimality of m), or read before any information is written into it (which

makes sense only if v i = vn+ I, in which case there are two incident edges to vn+ t, and so it is not

an information gate, conu'adiction). The post, pass, and find rules could not be used as vi has no

Page 24 of 43

incidentwriteedges,andthespyrulecouldnotbeused because v/would have to act, contradicting

assumption. Hence no de facto rule involves vi.

Combining these, if v i is not an actor, it and its incident edges can be deleted from G; but

this contradicts the minimality of m. This proves the lemma. I

With these two lemmata we are able to obtain a lower bound on the number of actors need-

ed to share information.

Theorem 16. Let k be the number of access sets in a minimal cover of G, and let I be the number of

information gates. Then k+l actors are necessary to produce a witness to can.know.

Proof: Let P l, Pm be a minimal set of rules required for a minimal set of actors v 1, ..., v n to

produce a witness to caneknow. Let the access sets A(vl) , A(v n) with loci v I..... v n be defined

on G. By Lemma 14, A(Vl) A(vn) at least cover G. Without loss of generality, take the vertices

v 1..... vito be the information gates. By Lemma 15, everyone of these must be an actor. Then each

of A(v]) A(v/) is a singleton set, and its focus is a member of its adjacent access sets. Thus the

other access sets A(Vl+l), ..., A(v/+ k) (where k + l = n) constitute an access set cover for G, and their

foci must also be actors. This proves the theorem. •

To derive an upper bound we shall find two more results useful:

/.emma 17. Let A(vl) A(v a) be a minimal set access cover for G Oordered by increasing indices

of v. If caneknow(vi+ 1, y, G) is true, then for some index m there exists a graph G m such that

caneknow(v i, y, G) is true and all rules in the derivation sequence G O I--* G m are initiated by v i,

vi+ 1, and perhaps z = A(v/) n A(Vi+l).

Proof." First, recall that we are assuming throughout this section that caneknow(x, y, G) is true. Con-

sider the spans to z from v i and vi+ 1. By the series of witnesses presented in section 4, in all cases

the vertices acting in the rule applications witnessing caneknow(x, y, G) are vi, vi+ 1, and occasion-

ally z. •

Corollary 18. For adjacent access sets A(vi) and A(vi+t), information can be transferred from v i to

vi+ 1 with no other actors unless there are consecutive edges with their only associated word in the

set {_i, _, _, _, _i,/'_} ; in this case additional actions performed by z = A(v i) n A(vi+I) axe

sufficient.

Proof: By inspection of the witnesses to the preceding Iernma. •

Page 25 of 43

Wecannowuse these two results to obtain an upper bound on the number of vertices which

must act to share information:

Theorem 19. k+l actors suffice to generate an (implicit or explicit) read edge from x to y in G.

Proof: Let A(Vl) A(Vk) be a minimal set access cover for G O with x _ A(v 1) and y _ A(vk).

Consider first y and vk. Five cases arise:

• v k = y. Then can-know(yr., y, G) is trivially true.

• v k terminally spans to y. By condition (8.3) of Theorem 8, this means y is a subject, so

apply lemma 7 to get the desired result. Note that y is an information gate in this case.

• v k initially spans to y. By condition (8.3) of Theorem 8, this means y is a subject, so

apply iemma 8 to get the desired result. Again, y is an information gate in this case.

• v k rw-terminally spans to y. Apply the take rule repeatedly to get an explicit edge; this

gives the desired result.

• v k rw-initially spans to y. By conditions (8.2) and (8.3) of Theorem 8, canoknow(v k, y,

G) is false (for if y is a subject, the word associated with the v k to y edge is not in B u C,

and if y is an object, vk does not rw-terminally span to it). This contradicts the hypothesis,

so v k cannot rw-initiaUy span to y.

In all cases where can.know(v k, y, G) is true, the only actors are the focus of A(v k) and,

possibly, the vertex y; in addition, y acts only if it is an information gate. Applying CoroUary 18

inductively, we have that whenever caneknow(v i, y, G) is true for i = 1 k, the only actors are

the loci of the relevant access sets and the information gates. So, we now consider how information

is transferred from v 1 to x. Again, five cases arise:

• Vl = X. We arc done.

• v I terminally spans tox. By condition (8.3) of Theorem 8, this means x is a subject, so

apply lemma 7 to get the desired result. Note that x is an information gate in this case.

• v I initially spans to x. By condition (8.3) of Theorem 8, this means x is a subject, so

apply lemma 8 to get the desired result. Again, x is an information gate in this case.

• v I rw-terminaUy spans to x. By conditions (8.2) and (8.3) of Theorem 8, the predicate

canoknow(v l, x, G) is false (for if x is a subject, the word associated with the v 1 to x edge

is not in B u C, and if x is an object, v 1 does not rw-initially span to it). This contradicts

the hypothesis, so v 1 cannot rw-terminally span to x.

Page 26 of 43

p s r q

x y z

Figure 3. A sample Take-Grant protection graph to demonstrate conspiracy in a single path graph.

• v I rw-initiany spans to x. Apply the take rule repeatedly to get an explicit write edge;

then v 1 applies the post rule to obtain the desired result.

Again, notice the only actors are the foci of the access sets and (where present) the infor-

mation gates. This proves the claim. •

As one would expect, these bounds are similar to the ones on the number of conspirators

necessary and sufficient to steal rights. The difference lies in the definitions of"access set" and"in-

formation gate;" these include at least as many vertices in the canosnoop case as in the canosteal

case. However, given a specific protection graph, computing the numbers k and I is of complexity

comparable to the complexity of computing them in the can*steal case, since only a small number

of new conditions must be tested.

At this point, let us take stock of what we have done by working a simple example. Con-

sider the protection graph G in figure 3. Taking u I - P, u2 - x, u 3 = z, and u4 = s, we see that the

predicate canoknow(p, q, G) is true by Theorem 8. (Incidentally, so is canosnoop(p, q, G); in the

conditions to Theorem 12, take x = x" = p, y" = z, and y = q.) The graph is a single path graph of

the variety we have been discussing, since information flows from p to q along the (sole) path be-

tween them. The following witness to canoknow(p, q, G) demonstrates this:

(1) z takes (r to q) from s.

(2) x grants (r to y) to p.

(3) p and z use the post rule through y to add an implicit edge from p to z.

(4) p and z use the spy rule to obtain an implicit r edge from p to q through z.

In this graph, the only information gate is p (by condition (i) of the definition of information

gate). The access sets of the four subjects are:

A(p)= { p } A(z)= { y,z,s,q }

a(x) = { p, x, y } A(s) = { s, q }

Page 27 of 43

It is clear that these four access sets form a cover for G; it is equally clear that the sets A(x)

and A(z) form a minimal access set cover for G. Applying Theorem 16, k = 2 and I = I, so a mini-

mum of 3 actors are necessary for information to flow from p to q; similarly, by Theorem 19, 3

actors are sufficient. This agrees exactly with the witness presented above, which in fact used a

minimal number of actors (p, x, and z).

7. Conspiracy in a General Graph

In the previous section, we restricted our attention to graphs in which cansknow is true, and

the only edges in the graph were those along which either rights or information were transferred.

We shall now case the latter restriction, and consider any valid Take-Grant protection graph in

which the predicate cansknow is true. Our goal is to derive a bound on the number of actors needed

to produce a witness to cansknow. We shall take the approach suggested by [21], again with suit-

able modifications.

In order to do this, we shall develop an analogue to the protection graph called an acting

graph. Basically, this graph will consist of vertices corresponding to access sets in the original

graph with edges corresponding to paths along which the focus of each access set can pass infor-

marion by acting alone (that is, no other subject will have to act in a rule application to help the first

transmit the information). In other words, this graph connects all actors with other subjects to

which they can pass, or from which they can receive, information.

Given a protection graph G with subject vertices v 1, v n, we need to generate an acting

graph G" with vertices Ul,..., u n. Each u i has associated with it the access set A(vi). Consider now

under what circumstances information can be passed from a member of one access set to a member

of another.

Let y be a vertex in an access set A(x) with focus x. There are five reasons y may be in A(x):

• yfx;

• x initially spans to y;

• x terminally spans to y;

• x rw-initially spans to y; or

• x rw-terminally spans to y.

Define the set A(x, x') to be all vertices in A(x) n A(x') except those vertices y which are

information gates and the only reason y is in both A(x) and A(x') is that the words associated with

the paths xy and x'y are those that make y an information gate. This means the set A includes only

Page 28 of 43

those vertices to which the foci can pass information (o1"from which they can receive information)

with the loci being the only actors.

To complete the construction of the acting graph G ",we add an undirected edge between u i

and uj when A(vi, v/) ;_ 0. (This corresponds to a brkige or connection existing between v i and vj

in G.) We also define two special sets; let

u x = { u i I vi = x or v i rw-initially spans to x }

and

uy = { ui I v i = y or v i rw-terminally spans to y}

Since we intend to use the acting graph to derive a bound, we must first show that it accu-

rately preserves the notion of sharing information.

Theorem 20. can-know(x, y, G) is true if and only if some vertex u a E ux is connected to some

vertex u b G ily.

Proof: (=¢) Let vi be the vertex in G corresponding to the vertex u i in G" (for i = 1.... , n). We must

consider two cases involving any vertex z in the definition of A above.

First, we restrict z to being an object in A(vi) nA(vj). Note that the subjects in G correspond

to vertices in G: and the edges between the vertices in G" correspond to words with components

in B u C in G. So, applying Theorem 8, as can.know(x, y, G) is true, some ua E u x is connected

tO SOme U b ¢ liy

Next, assume z is a subject in A(vi) _ A(vj). Let z be associated with %. As z is a focus

(since it is an information gate, and therefore the focus of an access set), it clearly has reason to be

in A(z); so { z} _ A(vi, z) and {z} _ A(z, vj). Hence, by construction of G', there are paths between

u i and lia, and % and u j, SO there is still a path between u i and lij (going through Ua). Hence lii and

Uj arc conncctCgl.

(¢=) Assume % is connected to lib along the (undirected) path Ua = u'1, u'a = %- By construc-

tion, Ui+ 1 can pass information to u i, so by induction % can receive information from u b. Also, as

ub ¢ uy, lib can obtain information from y, and as ua ¢ ux, ua can pass information to x. This means

that can.know(x, y, G) is true. •

We may now state and prove the desired result.

Page 29of43

Theorem 21. Let n be the number of vc_ices on the shortest path from an element u a • ux to an

element ub _ Uy in an acting graph G'. Then n actors are both necessary and sufficient to produce

a witness to cansknow(x, y, G).

Proof." (Necessity) Let ua = u" 1.... , u n = Ub be vertices along a shortest path from u a to u b, and

let v"i be the vertex in G corresponding to the ver_x u"i in G" (for i = 1..... n). If there exist only

rwtg-paths in G from v"1 to v•i+l (1 _ i < n), the v•l are loci of an access set cover for the path. By

construction of G" there are no information gates and if u a is not associated with x then the subject

associated with u a rw-initially or initially spans to x. A similar argument holds for u b and y. By

Theorem 16, n actors are necessary.

Now suppose there is an (induced) path in G" that is not in G. Even though redundant rule

applications m_: occur, clearly duplicated vertices along a span affect the claim only if they reduce

the number of required actors. We show this is not possible by contradiction. Suppose that actors

U'l, ..., U'i.l, U'i+l, U"n could produce a witness. Then there is a vertex z E A(vi.1) ¢'h A(vi+I).

As the u" i arc on the shortest path, there is no path between u•i.l and u'i+ 1, so z is neither v'i_ ! nor

v'i+ 1, and further z E A(Vi.l,Vi+l). Hence ifz is an object, there is no word in B u C between the

vertices via and vi+ 1, so cansknow is false by Theorem 8, whence u"1..... u'i. !, u'i+l, ..., u•a can-

not produce a witness. On the other hand, if z is a subject, it must be an information gate, in which

case it must be an actor. In either case, the vertices u" 1, U'i. 1, U•i+I U"n cannot produce a

witness without another vertex being added.

(Su_ciency) Ftrst, as x and y are distinct, and all the v"i corresponding to the u"i on the shortest

path distinct, all spans between these vertices allow the appropriate sequence of rule applications

exhibited in section 4 to be applied, provided the foci of the access sets differ from their common

elements. By inspecting the sequences, whenever a focus and a common element do coincide the

rule whose application is prevented either provides a right already possessed, a right used in the

subsequent rule application to acquire a right already possessed, or an implicit edge where one al-

ready exists. In these cases the rule application is unnecessary. Noting this, we need only induct on

the spans corresponding to the edge of the shortest path using Lemma 17 to obtain the result. •

In this section and the previous section, we very deliberately defined terms to capture the

ability of a single node to pass information, or to prevent it from being passed; we then abstracted

the instantiation of these terms to an acting graph. This is a generalization of Snyder's conspiracy

graph, the derivation of which is similar but does not reflect information flows [21].

Page 30 of 43

• • _

p a

r w r

s f h i J

Figure 4a. A sample Take-Grant protection graph to demonsu'ate conspiracy in a general graph.

A A

W v

p b

A A A
i Y v

s f h

A A

Figure 4b. The associated acting graph. For simplicity vertices are named as in the regular graph.

Let us apply these results to a simple protection graph. In figure 4a, b is the only informa-

tion gate, and the access sets of the objects are:

A(p):{p,a} A(e) = (d,e,j,q}

A(b)=(a,b} A(h) = {f,h,i}

A(c)={b,c,d} Aft) = {f,s}

A(d)={d} A(s) = (s}

From these, we can construct A(x, y) for each pair of subjects x and y; the nonempty ones axe:

A(p, b)- { a }

A(b, c)= { b }

A(c,d)= { d }

A(c,e)= { d }

A(d, e)= { d }

A(h,f)={ r}

A(f, s) = { s }

The resulting acting graph is shown in figure 4b. By Theorem 8, can*know(p, q, G) is true

(take n = 5, x -- ul = P, u2 = b, u3 = c, u4 = d, and us = e). Also, in G , e ¢ yqandp¢ yp, so some

element of yp is connected to some element of yq. This illustrates Theorem 20.

The following sequence of rule applications is a witness to can*know(p, q, G):

(1) • and c use the post rule through d to add an implicit read edge from e to c;

(2) c uses the pass rule to add an implicit read edge from b to e;

(3) b and p use the post rule through a to add an implicit read edge from p to b;

Page 31 of 43

(4) p and b use the spy rule to add an implicit read edge from p to e;

(5) p and • use the spy rule to add an implicit read edge from p to q.

Four vertices0b,c,e,and p) actin thiswitness,and indeed the shortestpath inG "between

p and • containsfourvertices.This illustratesTheorem 21.

Consider now s and q. According to Theorem 20, as they are not connected in G.

can.know(s, q, G) should be false.As thereisno twig-path from h to e with associatedword in

B u C, condition (8.3) of Theorem 8 fails, so can*know(s, q, G) is indeed false.

Finally, let us consider just the top part of this graph (from p to q), which is a single-path

graph of the sort discussed in the previous section. The only information gate is b, and the access

sets with foci p, c, and • provide a complete cover for the subgraph. Hence by Theorem 16 and

Theorem 19, four actors are necessary and sufficient to witness can*know(p, q, G), and our witness

confirms this.

8. Comparison with Results for Theft of Rights

The similarity of the definitions of can*steal and can*snoop lead to the question of the re-

lationship of these de jure and de facto results with the analogous de jure results in [21]; specifi-

cally, how different are the definitions, theorems and proofs, and how much more (or less) complex

is it to determine bounds on the number of actors needed to steal information as opposed to steal

rights?

The fundamental difference in the results presented here is the addition of extra conditions

presenting more ways in which conspiracy can occur, for example, the de jure analogue to access

set requires only that the focus initially or terminally span to every vertex in the set whereas here,

we add those vertices to which the focus also rw-initially or rw-terminally spans. Most of the def-

initions in this work follow directly from their analogues; however, the changes add complexity to

both the statements of the theorems and to the proofs. For example, the key theorem in [21] (theo-

rem 6 in this paper), which states necessary and sufficient conditions for rights to be stolen, requires

checking for only three (simple) conditions; the analogue of that theorem in this paper, theorem 9,

requires four (more complex) conditions to hold.

Consider a Take-Grant protection graph G in which the predicates can*steal(r, x, y, G) and

can*snoop(x, y, G) are true. Let AR(y) be the set of nodes containing y and those nodes to which y

initially or terminally spans, and let a tg-sink be a vertex with exactly two incident edges, both in-

coming and both labelled t or both labelled g. In [21], Snyder shows that a conspiracy graph can

Page 32 of 43

be constructed in the same way that an acting graph was constructed in section 7, above. Note that

AR(y) _ A(y), and that a tg-sink is also an information gate (by part (ii) of the definition). Hence,

the conspiracy graph associated with G will be a (possibly improper) subgraph of the acting graph

of G. So, in no case will stealing information require more conspirators than stealing rights; and if

the acting graph contains a shorter path between the vertices associated with x and y than does the

conspiracy graph, stealing information will require fewer conspirators.

9. Applications of the Theory

Before we discuss security breaches, we should say a few words about the notion of a se-

curity policy. Breaches of security are defined in terms of a set of rules governing the use (and

abuse) of a computer system. These rules, called the security policy, define what is allowed and

what is not allowed. For example, a security policy may require that fights to a file be given only

by the owner;, in this case, if the owner mailed a copy of a protected file m another user, no breach

of security has occurred even if the recipient had no right to see the file. The test of a system's se-

curity is how well it implements the policy.

In this section we consider three different security policies. The first is that of complete iso-

lation of subjects; this technique is quite effective for solving the problem of covert channels, but

in most cases is far too restrictive. The second is that the owner of an object controls the dissemi-

nation of rights over that object; this is the policy exhibited by son_ database systems such as Sys-

tem R. The third is that no subject other than the owner may have any rights to an object, and any

information flowing m or from that object may do so only with the cooperation of the owner, this

policy is one exhibited by reference monitors.

We consider first the statement of each policy in terms of the four predicates, then describe

the set of graphs that satisfy that policy; finally, we construct protocols which preserve membership

of the graphs in the set when the protocols are used.

9.1. Complete Isolation of Each Process

The policy of total isolation of each process prevents breaches of security and solves the

confinement problem by preventing any transfer of information or rights among subjects [13].

To prevent any information or rights transfer (illicit or otherwise) it suffices to make all four

predicates always be false.The set of graphs satisfying this policy contains exactly those graphs h

satisfying

Page 33 of 43

--_anoshare(_,x,y_)^ --_an*stea/(_,x,y_)̂ --_anSknow(xj, h) ^ --_an*snoop(x,y,h)

for all pairs of vertices x and y in h, and all subsets of rights ct _ R.

To characterize this requirement in terms of the rules, note that by Theorem 3 and Theorem

8, it suffices to prevent any bridges or connections between any two subjects to enforce this condi-

tion; in that case, both conditions (3.4) and (8.3) can never hold. Because the x and y referred to in

the theorems may be subjects, it is not possible to prevent conditions (3.2), (3.3), (8.1), and (8.2) a

priori from occurring; hence the above constraint is also necessary. This may be formalized to

prove the following Take-Grant characterization of the set of graphs satisfying the policy:

Theorem 22. To enforce complete isolation of subjects, no bridges or connections may exist be-

tween any two subjects in the protection graph.

Determining whether or not a protection graph meets this requirement is easy: just look for

bridges or connections between subjects. Also, when a new de jure rule is applied, we can test for

violation of the restriction just by looking at the paths affected by the rule application; in the worst

case, this requires checking every edge in the graph. So:

Corollary 23. Testing a graph for violation of the restriction may be done in time linear in the num-

ber"of edges of the graph. Determining whether or not an application of a de jure rule violates the

restriction may be done in time linear to the number of edges of the graph.

This does not require any changes to the take or grant rules, since in a graph in which cre-

ation is disallowed, bridges and connections may not be constructed unless they already exist.

However, it does require changing the create rule, since if one subject creates another, the parent

may give itself any rights in R to the child. Should one of these rights be take, grant, read, or write,

there will be a bridge, connection, or both between the parent and the child. We do so in the manner

of Snyder [19] by requiring all subjects to create other subjects using the following subject creation

protocol:

subject creation protocol: A subject x desiring to create a subject y over which x has the set of

rights a, x must execute the following rules atomically:

x creates (a to new subject y)

x removes ({ t, g, r, w } to) y

By enforcing this protocol, and preventing any node from applying the create rule directly

to create a subject, complete isolation can be enforced.

Page 34 of 43

We should note though thatin practisesuch systems would be useless,since no process

could communicate with another inany fashion.Even in systems where isolationisdesired,itis

typicallyused topreventspecificsetsofprocessesfrom communicating; otherprocessesmay com-

municate freely.(Forexample, a system enforcingsecuritylevelswould allow two processesatthe

same leveltocommunicate freely,whereas one ata higherlevelcould not transmitinformationto

a process at a lower level.)So, most likelythe "complete isolation"would be enforced between

(forexample) childrenof differentsubjects,and a d/fferentstatementof the securitypolicywould

be needed. Hence, we turnfrom thissomewhat uninterestingpolicyto considerone in which the

holderof a rightover an objectdetermines towhat othersubjectsitshallpass thatright.

9.2. Transfer on Possession of a Right

This policy, used for example in System R [7], creates a system in wh/ch mere possession

of a right enables a subject to propagate that right. Hence the set of graphs meeting this policy is

the set of graphs with elements satisfying

cane share(ot,x,y,h) ^ -,cane steal(_ x,y,h) ^ caneknow(x,y,h) ^ -,cane snoop(x,y,h)

for all protection graphs h, all pairs of vertices x and y in h, and all subsets of rights ct _ R. The

reasoning is that any two subjects must be able to share rights or information, but no set of subjects

can steal rights or information without the consent of the owner. To satisfy the first two predicates,

the owner must cooperate in any transfer of rights; to satisfy the latter two, the owner must coop-

crate in any sharing of information. We also note that any pair of subjects can share rights or infor-

mation by the consu'uction of this condition.

For caneshare(o_,x,y,h) to be true but canesteal(_x,y,h) to be false, condition (5.4) must

be false since negating any of the other conditions of Theorem 5 negates one of of conditions (3. I),

(3.2) or (3.3), making caneshare(ct,x,y,h) false. For (5.4) to be false, either there must be no bridges

between any two subjects (by the definition of "island") or no take edges incident upon any subject.

We note that the former renders caneshare(_x,y,h) false. But the latter renders canesnoop(x,y,h)

false (as all rw-terminal spans will have length 1, so condition (12.3) fails) without necessarily ne-

gating caneknow(x,y,h) or caneshare(cz, x,.v,h). Clearly, this characterization is best, and from the

above itcan be shown:

Theorem 24. Ifno subjecthas any incidenttakeedges, then the securitypolicy allowing the pos-

sessorof a rightto transferthatrighttoanotherisimplemented.

Testingforthisconditionissimple:

Page 35 of 43

Corollary 25. Testing a graph for a violation of the restriction may be done in time linear in the

number of edges in the graph. Further, determining whether or not an application of a de jure rule

violates the restriction may be done in constant time.

The obvious way to prevent creation of take edges is to make the appropriate modification

to the subject creation protocol above. However, the lack of take edges also inhibits sharing; to see

why, notice that the grant rule does not add any edges to the source of the edge labelled grant.

Hence, Lemma 2 cannot hold (in fact, the proof that it is true requires the use of a take rule). Now

consider a graph h meeting this security policy. As there are no take edges, the only take edges that

could be added using the rules would be to new vertices. If those vertices are subjects, any subse-

quent manipulation of those rights would require an application of Lemma 2, which is false given

the replacement of the create rule for subjects by the modified subject creation protocol.

To overcome this problem, we can require that in the initial graph, all subjects have grant

fights to one another, and modify the subject creation protocol to be:

granting subject creation protocol: A subject x desiring to create a subject y over which x has the

set of rights _, x must execute the following rules atomically:

x creates ((z to new subject y)

x removes ({ t } to) y

x grants ((g } to all other subjects) to y

x grants ({ g } to y) to all other subjects

If this protocol is used to create subjects, creating a new subject would add an incoming

grant edge to the parent, in which case the proof of Lemma 2 is straightforward (see figure 5). Then

as Lemma 2 is true, the transfer of any rights from a newly created subject to the parent using take

can be emulated by the child granting the parent the rights. If the child is an object, of course, the

issue never arises since the only way a right can be added to the child is by the parent granting the

right, in which case application of the take rule is redundant and can be eliminated. Hence the se-

curity policy will hold.

9.3. Owner Propagates Information but Not Rights

This policy creates a system in which only one subject is to have rights over a designated

object. Those rights may not be transferred (with or without the consent of the subject). However,

the subject may allow information to flow out of the object. An example of this policy would be a

network server which responds to queries by giving information about the users active on a corn-

Page 36 of 43

g 0_

[_. y _ y creates (g to new subject) s using
y x z ,. & ,,/" x _- the granting subject creation pro-

tocol

a

g x _Z

g

g

y grants (g to s) to x

Q

m

Y g x cz z
x grants (ct to z) to s

s grants (cx to z) to y

Figure 5. Proof of Lemma 2 using the granting subject creation protocol

puter, the server has the fight to obtain that information from the system and pass that data to an-

other process, but it cannot give any other process the right to obtain that information directly. The

set of graphs meeting this policy is the set of graphs with elements satisfying

--,cano share(cx,x,r,h) A -,cano steal(cx,x,r JO A cano know(x,r,h) A _cano snoop(x,r,h)

for all protection graphs h, any element r of the set of distinguished objects (called "resources"),

any vertex x h, and all subsets of fights o_ g R. The reasoning is that no fights to the resource may

be u'ansferred (hence the first two predicates must be false). To satisfy the latter two predicates, the

owner must cooperate in any sharing of information.

If canoshare(ogx,r,h) is false, so is canosteal(ff.,x,r,h), and without loss of generality we

can consider only the former. Given that s in Theorem 3 is the unique subject (or monitor) m which

possesses rights to r, (3.1) and (3.3) both hold; as x may be a subject, (3.2) holds. Hence (3.4) must

be made to fail; the obvious way is to prevent there being bridges between m and any other subject.

This means that no take or grant rights may be incident on m (unless they are between m and r).

Page 37 of 43

Theability to transfer information is required; however, such transfers require m be an ac-

tor. So we must prevent the predicate canssnoop(x,r,h) from holding. As canssteal(a,x,r,h) is false

for all a _R, we need only consider the conditions in Theorem 12. As only m has r fights over r,

condition 02. l) holds; as x may be a subject, (12.2) may hold; but as no take edges may be incident

on m, condition (12.3) always fails. So canosnoop(x,r,h) also fails. But all of the conditions in The-

orem 8 hold, so cansknow(x,r,h) holds, as required.

Finally, we note that as m rw-terminally spans to r, r ¢ A(m). Further, as no other vertex

terminally, initially, rw-terminally, or rw-initially spans to r, the only way for information to flow

out of r to some vertex x is through m. By the nature of the de facto rules, m must be an actor, as

required. So the above formula accurately captures the security policy, and in Take-Grant terms,

this discussion may be formalized to show:

Theorem 26. Let a subject m possess exclusive rights to a resource r. If there are no take or grant

edges incident upon m (except possibly between m and r only), then no other vertex can acquire

rights over r. Further, information may flow out of r only with m's being an actor in a de facto rule.

Finally, we note that the same problems for complete isolation arise if m can create sub-

jects; but if the following creation protocol is always used by m, the security policy will be en-

forced:

monitoring creation protocol: A monitor m desiring to create a vertex y over which m has the

set of rights a, m must execute the following rules atomically:

m creates (a to new vertex y)

m removes ({ t, g} to) y

This preserves the condition that no take or grant edges be incident upon m.

9.4. Reference Monitors

The concept of a reference monitor was first described in [1] as a subject or process meeting

three requirements:

1. the process must be isolated (that is, tamper-proof);

2. the process must be complete (that is, always invoked when the resource it controls

is accessed); and

3. the process must be verifiable (that is, small enough to be subject to analyses and

tests the completeness of which can be ensured).

Page 38of43

We now restate these three conditions in terms of the Take-Grant Protection Model. Let the

reference monitor be m and the resource it protects be r. Isolation means that no-one can write over

the monitor, this may be stated as -,cansshare((w},x,m,G O) for all x e G0. Completeness means

that whenever any x e G Oobtains access to the resource, then m is an actor in the witness to the

access. Verifiability is a bit more tricky, since it consists of two parts. The first, an implementation-

level task of verifying that the monitor is indeed implemented correctly, is beyond the scope of this

paper;, however, the second, which is a verification that no information will leak or rights be given

away when the monitor is implemented correctly, is merely the condition in the preceding section.

Using that analysis, we may characterize what protection graphs containing reference mon-

itors look like. Let GObe a protection graph with a single reference monitor m protecting a single

resource r. Then no edge with a right in { w } may have m as its target and no edge with a right in

{ t, g } may be incident on m (with the possible exception of such an edge between m and r). As

demonstrated in the previous section, the latter ensures information or rights may not be stolen

from m, that m may not transfer rights, and that m must be an actor in any wimess to a transfer of

information. The former simply ensures no subject will ever be able to write to m, since no rule

adds an edge labelled 0c unless there is already an edge labelled _xalready incident upon that vertex.

One general observation about modelling a reference monitor should be made. In some

sense this is a circular exercise, since a reference monitor would be used to enforce rights indicated

by the model; so the proof that the monitor is "secure" requires the assumption that the model is

correctly implemented by the thing being modelled. However, this tautology holds for any method

used to model a system; if there is a mechanism that enforces rights within the system based upon

the model, the model cannot be used to examine that mechanism for security. But reference mon-

itors do more than simply control access rights because they also control access; so given a mech-

anism to enforce those rights, the above applies to reference monitors guarding resources other

than the access control graph (such as printers, the CPU, and so forth).

10. Conclusion

This paper has explored several aspects of information transfer in the Take-Grant protection

model. The notion of information theft was developed, and then a bound put on the number of ver-

tices necessary and sufficient to steal information. Finally, as an application of this theory, the the-

oretical characteristics of reference monitors were expressed in terms of those predicates.

Page 39 of 43

This has several ramifications. The first is that the Take-Grant protection model, while pri-

marily a tbm_ticsl tool, can be used to model very practical concepts. In [3], the protection model

was used to represent hierarchies and derive results paralleling the work done earlier by Bell and

LaPadula [2]; now, the model can be used to capture the key notions of reference monitors and of

several security policies. In short, the model can no longer be held to be a purely theoretical tool.

Some aspects of the model are particularly enticing in terms of applicability to real systems.

For example, many models allow reflexive fights. The Take-Grant protection model does not. Cor-

rectly representing a real system in a theoretical model requires that all parts of the entity being

modelled be represented as dictated by their am'ibutes. Thus, a process would not be represented

by a single subject; it would be a set of objects, some of which represent those parts of the process

instructions and data resident in memory, others of which represent the resources held by the pro-

cess, and so forth. The subject would represent the execution of the process. As the execution con-

trois all the objects representing the process, it would have various rights over each. So if a process

needed to access a part of its memory (say, to alter a variable which is shared with other processes),

the subject would not need write permission on itself hut rather write permission on the object rep-

resenting that variable. Similarly, ff certain portions of the process' memory were not writable (for

example, the instructions making up the program being executed), the subject representing the pro-

cess execution might have read rights, but not write rights, over that object. Hence the u'ansfer of

information does not appear to require reflexivity when a system is appropriately represented in a

theoretical model. Similarly, as no subject should be able to confer upon itself rights which it does

not already have, reflexivity adds nothing to the modelling of transfer of authority. This intuition

indicates the model does not suffer from being irreflexive; indeed, it forces the modeler to break

the system being modelled into all component pans. Perhaps this would reveal unrealized assump-

tions or dependencies.

As an aside, we note that formulating a reflexive version of the Take-Grant Protection Mod-

el would alter its nature radically. Even though this reflexive version would be biconditional (and

hence in a class in which, in the general case, safety is undecidable [8]), questions of safety would

be decidable, as we pointed out in the introduction. In fact, if a subject had take rights over any

other node, that subject would have all defined rights over that node. Further, if one subject had

grant fights over another, that subject could give the target of the grant rights any authority over

itself. While this would most likely not change the statement of the theorems giving necessary and

sufficient conditions for sharing and theft, it would certainly change their interpretation (for exam-

Page 40 of43

pie, the conditions in the theorems requiring the existence of a vertex s with an edge from s to an-

other vertex y would be Irivially true; just take s to be y). The precise effects of reflexivity, as well

as its necessity, is an area in which further work is needed.

In the definition of can.snoop, the target of the snooping was not to cooperate with the

snooping. An alternate definition would be to allow the target to cooperate, but not the owners of

the target; in this case, one could treat the target as a Trojan horse designed to "leak" information.

Under this assumption, the proof presented for Theorem 12 does not apply (specifically, the rule Pi

could be a post orfind rule); this is not surprising, since condition (12.2) of that theorem is overly

restrictive if q is a subject and allowed to act in a rule application. Another area for future work lies

in the precise reformulation of the necessary and sufficient conditions for can.snoop to be true if

the target of the snooping is allowed to act.

A related area is to incorporate a notion of"group" into the model. Changes of protection

state in most computers do not affect a singie process (subject) or resource (object); they affect sev-

eral. However, within the Take-Grant protection model, each rule affects only one subject and one

object (the source and target of the added implicit or explicit edge). How these rules might be mod-

ified to take these situations into account is another open area.

This leads to the following question: when the rules are changed to these "group rules," new

theorems stating necessary and sufficient conditions for the predicates can.share, can.steal,

can.know, and can,snoop to be true will have to be derived. It would be most useful if one could

derive"metatheorems" instead, so that given a set of rules, one could use the metatheorems to state

necessary and sufficient conditions for each of the predicates instead of having to rederive those

results. This is yet another area for research.

Acknowledgments: This work owes much to Larry Snyder, who Fast interested me in the Take-

Grant protection model and whose work on it has been the basis for many of the results presented

here. Thanks also to Dorothy Denning, who suggested a line of research that caused me to consider

the particular problem leading to the results presented her, and to the anonymous referees, whose

diligence greatly improved the quality of this paper.

References

[1] Anderson, J. Computer security technology planning study. Technical Report ESD-TR-73-

51, USAF Electronics Systems Division, Bedford, MA (Oct. 1972).

Page 41 of 43

[2]

[31

[41

[51

[61

[71

[8]

[9]

[10]

[11]

[12]

[131

[141

[15]

[16]

Bell, D. and LaPadula, L. Secure computer systems: mathematical foundations and model.

Technical Report M74-244, The MITRE Corp., Bedford, MA (May 1973).

Bishop, M. Hierarchical take-grant protection systems. Proc. 8th Syrup. on Operating Sys-

tems Principles (Dee. 1981), 107-123

Bishop, M. and Snyder, L. The transfer of information and authority in a protection system.

Proc. 7th Syrup. on Operating Systems Principles ('Dec. 1979), 45-54.

Feiertag, R. and Neumann, P. The foundations of a provably secure operating system

(PSOS). Proc. of the National Computer Conference 48 (1979), 329-334.

Graham, G. and Denning, P. Protection: principles and practices. Proc. AFIPS Spring Joint

Computer Conf. 40 (1972), 417-429

Griffiths, P. and Wade, B. An authorization mechanism for a relational database system.

Trans. on Database Systems 1,3 (Sep. 1976), 242-255.

Harrison, M. and Ruzzo, W. Monotonic protection systems. In Foundations of Secure Com-

puting, Academic Press, New York City, NY (1978), 337-366.

Harrison, M., Ruzzo, W., and Ullman, J. Protection in operating systems. CACM 19, 8

(Aug. 1976), 461-471

Jones, A. Protection mechanism models: their usefulness. In Foundations of Secure Com-

puting, Academic Press, New York City, NY (1978), 237-254.

Jones, A., Lipton, R., and Snyder, L. A linear time algorithm for deciding security. Proc.

17th Annual Syrup. on the Foundations of Computer Science (Oct. 1976), 33-41.

Lampson, B. Protection. Fifth Princeton Conf. on Information and Systems Sciences (Mar.

1971), 437-443.

Lampson, B. A note on the confinement problem," CACM 16, 10 (Oct. 1973), 613-615.

Lipton, R. and Snyder, L. A linear time algorithm for deciding subject security. J. ACM. 24,

3 (Jul. 1977), 455-464.

McCauley, E. and Drongowski, P. KSOS - the design of a secure operating system. Proc.

of the National Computer Conference 48 (1979), 345-353.

Popek, G., Kampe, M., Kline, C., Stoughton, S., Urban, M., and Walton, E. UCLA secure

UNIX. Proc. of the National Computer Conference 48 (1979), 355-364.

Page 42 of 43

[17]

[18]

Sandhu, R. Expressive power of the schematic protection model (extended abstract). Proc.

o/the Computer Security Foundations Workshop, Technical Report M88-37, The MITRE

Corp., Bedford, MA (Jun. 1988), 188-193.

Sandhu, R. The schematic protection model: its definition and analysis for acyclic attenu-

ating schemes. J. ACM 35, 2 (Apr. 1988), 404-432.

[19] Snyder, L. On the synthesis and analysis of protection systems. Proc. Sixth Syrup. on Op-

erating Systems Principles (Nov. 1977), 141-150.

[20] $nyder, L. Formal models of capability-based protection systems. IEEE Transactions on

Computers C-30,3 (Mar. 1981), 172-181.

[21] Snyder, L. Theft and conspiracy in the take-grant protection model. JCSS 23, 3 (Dec. 198 I),

333-347.

[22] Wu, M. Hierarchical protection systems. Proc. 1981 Syrup. on Security and Privacy (Apr.

1981), 113-123.

Page 43 of 43

